LLM Strategy

Optimize your event ingestion for Large Language Model workloads.

Overview

The LLM Strategy is designed specifically for handling events related to language model operations, including:

  • Token usage tracking
  • Request/response logging
  • Model performance metrics
  • Cost analysis

Configuration

Basic Setup

javascript
const llmStrategy = { type: 'llm', model: 'gpt-4', tracking: { tokens: true, latency: true, costs: true } };

Advanced Configuration

javascript
const advancedConfig = { batchSize: 1000, compression: 'gzip', retention: '30d', aggregation: { enabled: true, interval: '1h' } };

Features

Token Tracking

Automatically track token usage for each request:

  • Input tokens
  • Output tokens
  • Total tokens
  • Cost per token

Performance Metrics

Monitor model performance:

  • Response latency
  • Throughput
  • Error rates
  • Success rates

Best Practices

  • Enable token tracking for cost optimization
  • Set appropriate batch sizes
  • Use compression for large payloads
  • Configure retention policies

Use Cases

Ideal for:

  • AI application monitoring
  • Cost optimization
  • Performance analysis
  • Usage analytics

Is this page helpful?